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Abstract

Babu�sska and Oh introduced a new approach, called the method of auxiliary mapping (MAM), that can effectively

handle singularities in the framework of the p-version of the FEM. In this paper, this new approach is generalized so

that it can yield highly accurate energy release rates for the cracks in composite materials. The results obtained by this

method are more accurate than those obtained by the conventional methods (quarter-point singularity elements).

Moreover, it is demonstrated that the mode-separated energy rates of interlaminar cracks of a laminate virtually

converge when its layers are of the same material and have different fiber orientations.
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1. Introduction

The h-version of finite element method (h-FEM) is the standard one, where the degree p of the element is

fixed, usually at a low level, typically with p ¼ 1; 2, or 3 and the accuracy is achieved by properly refining
the mesh. On the other hand, the p-version of finite element method (p-FEM) fixes the mesh and the ac-

curacy is achieved by increasing the degree of polynomial basis functions uniformly or selectively. Recently,

Babu�sska and Oh [1] introduced a new method, called the method of auxiliary mapping (MAM), to deal

with the corner singularity in the framework of p-FEM. The essence of this method involves locally

transforming a region around each singularity to a new domain by using a conformal mapping such as

n ¼ zb. Here b is directly determined by the known nature of the singularity in such a way as to locally

transform the exact(singular) solution to a smoother function, which can be easily approximated in the new

domain by the conventional use of FEM.
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In this paper, we are concerned with generalizing MAM so that it can yield accurate energy release rates

for cracks in heterogeneous materials as well as cracks in homogeneous materials. Main results of this

paper include the followings:
(1) A finite element based crack closure method has been shown to be efficient in calculating the strain en-

ergy release rate for cracks in homogeneous elastic media [20]. The energy release rates for cracks in

homogeneous isotropic materials computed by our method (the mapping technique) in p-FEM are

more accurate than those obtained by the conventional method (h-FEM along with the cubic singular-

ity elements) by a factor of 10.

(2) For bimaterial interfacial cracks, because of its oscillatory nature, the strain energy release rates for

Mode I and Mode II do not exist [18]. Thus, converged strain energy release rates for Mode I and Mode

II cannot be calculated using FEM with the crack closure method. However, in case of interlaminar
cracks of a laminate whose layers are of the same material and may have different fiber orientations,

the mismatch between two layers is weak; hence, the oscillating factor is very small. It is known that

in such cases, Irwin�s crack closure integrals defined in Section 2.2 virtually converge ([3–5]: the author

is grateful to the referees for these references and pointing out this result). The results obtained by

applying our method match very well with this known fact.

This paper is organized as follows: Section 2 introduces the variational form of elasticity equations and

the definition of energy released rate. Section 3 develops technical lemmas and methods to obtain highly

accurate energy release rates and describes the procedure for implementing the proposed method. Section 4
explains the reasons why the mode-separated energy release rates for interlaminar cracks of the laminates

virtually converge when its layers are different only in fiber orientations. In Section 5, in order to dem-

onstrate the effectiveness of the proposed method, this method is applied to compute energy release rates

for cracks in homogeneous isotropic materials, cracks in isotropic bimaterials, and interlaminar cracks of

fiber-reinforced orthotropic materials. Finally, change of variables and blending mappings for our method

are given in Appendix A.
2. Definitions and terminologies

2.1. The equilibrium equations of elasticity

Let X � R2 be a polygonal domain (elastic medium) with boundary oX and H 1ðXÞ ¼ fw : kwk1 <1g,
where

kwk21 ¼
Z
X
jwj2
"
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In elasticity, the state variable is the displacement vector denoted by fug ¼ fuxðx; yÞ; uyðx; yÞgT and the

flux is the stress tensor denoted by frðuÞg ¼ frðuÞx ; rðuÞy ; sðuÞxy g
T
: Let feðuÞg ¼ feðuÞx ; eðuÞy ; sðuÞxy g

T
be the strain tensor.

Then the strain–displacement and the stress–strain relations are given by

feðuÞg ¼ ½D�fug; frðuÞg ¼ ½E�feðuÞg; ð1Þ

respectively, where
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o
ox 0 o

oy

0 o
oy

o
ox

" #T
;



88 H.-S. Oh / Journal of Computational Physics 193 (2003) 86–114
is the differential operator and ½E� ¼ ½Eij�, 16 i; j6 3, is the material matrix resulting from the constitutive

equation.

The equilibrium equations of elasticity are

½D�TfrðuÞgðx; yÞ þ ff gðx; yÞ ¼ 0; ðx; yÞ 2 X; ð2Þ

where ff g ¼ ffxðx; yÞ; fyðx; yÞgT is the vector of internal sources representing the body force per unit area.

Introducing the relations (1) into Eq. (2), it can be written as

½D�T½E�½D�fugðx; yÞ þ ff gðx; yÞ ¼ 0; ðx; yÞ 2 X: ð3Þ

Suppose the governing differential equation (3) is subject to the following boundary conditions:

½N �frðuÞgðsÞ ¼ f ~TTgðsÞ ¼ f ~TTxðsÞ; ~TTyðsÞgT; s 2 CN ; ð4Þ
fugðsÞ ¼ f~uugðsÞ ¼ f~uuxðsÞ; ~uuyðsÞgT; s 2 CD; ð5Þ

where �CCN [ �CCD ¼ oX, fnx; nygT is a unit vector normal to the boundary oX, and

½N � ¼ nx 0 ny
0 ny nx

� �
: ð6Þ

Let H 1
DðXÞ ¼ fw 2 H 1ðXÞ : wjCD

¼ 0g. Then the variational form of Eqs. (3)–(5) is as follows: find fug such
that ux; uy 2 H 1ðXÞ; fug ¼ f~uug on CD and

Bðfug; fvgÞ ¼FðfvgÞ for all fvg 2 H1
DðXÞ ¼ H 1

DðXÞ
� �2

; ð7Þ

where

Bðfug; fvgÞ ¼
Z
X
ð½D�fvgÞT½E�ð½D�fugÞ dx dy; ð8Þ
FðfvgÞ ¼
Z
X
fvgTff g dx dy þ

I
CN

fvgTf ~TTg ds: ð9Þ

By the strain energy of the displacement vector fug we mean UðfugÞ ¼ ð1=2ÞBðfug; fugÞ.

2.2. Mode-separated energy release rate

Consider a crack with area a in a deformable ideally brittle (the plastic deformation is negligible)

continuum subjected to arbitrary loading. If the applied load is time independent and the crack grows
slowly, then according to the law of conservation of energy, we have

oW
oa
¼ oU

oa
þ oC

oa
; ð10Þ

where W is the work performed by the applied loads, U is the elastic strain energy and C represents the

energy spent in increasing the crack area. IfP ¼ U � W denotes the potential energy of the system, Eq. (10)

may be put in the form

� oP
oa
¼ oC

oa
: ð11Þ



H.-S. Oh / Journal of Computational Physics 193 (2003) 86–114 89
If c represents the energy required to form a unit of new material surface, Eq. (10) can be written as

[6]

G ¼ � oP
oa
¼ oC

oa
¼ 2c; ð12Þ

which represents the fracture criterion for the crack growth. The factor 2 appearing on the right-hand side

of Eq. (11) refers two new material surfaces formed during the crack growth.

In the fixed-grips loading the surface of the continuum on which the loads are applied is assumed to

remain stationary during crack growth. If the work of the body forces is ignored, the work performed by

the applied loads vanishes and Eq. (12) takes the form [6]

G ¼ � oU
oa
¼ 2c; ð13Þ

which indicates that the energy rate for crack growth is supplied by the existing elastic strain energy of the

solid. Thus, G is usually called the Strain Energy Release Rate.

Consider the two-dimensional case where the crack extends along its own direction in a self-similar

manner. Then the central difference approximation (CDA) for the energy release rate is the following:

G � Uðaþ DÞ � Uða� DÞ
2D

ð14Þ

for small values of D.
On the other hand, by observing that the work necessary to extend the crack from a to aþ D is the

same as that necessary to close the crack tip from aþ D to a, Irwin [17,20] obtained the energy release
rate as

G ¼ lim
D!0

1

2D

Z D

0

ryðr; 0Þ½uyðD� r; pÞ � uyðD� r;�pÞ� dr

þ lim
D!0

1

2D

Z D

0

sxyðr; 0Þ½uxðD� r; pÞ � uxðD� r;�pÞ� dr; ð15Þ

which is known as the virtual crack closure technique (VCCT). Here ux and uy represent the x- and the y-
component of the displacement vector, respectively.

Two integrals in this formula are called the opening mode (Mode I) and the sliding mode (Mode II),
respectively. They are written as

GI �
1

2D

Z D

0

ryðr; 0Þ½uyðD� r; pÞ � uyðD� r;�pÞ� dr; ð16Þ
GII �
1

2D

Z D

0

sxyðr; 0Þ½uxðD� r; pÞ � uxðD� r;�pÞ� dr: ð17Þ

However, due to the oscillatory nature of the stress and displacement fields at the crack tip, the modes

are inseparable for most composite materials. In other words, for the interfacial cracks between dissimilar

materials, each of the integrals in VCCT usually do not converge because of the nature of the interpene-

tration of the crack surfaces near the crack tip. Of course, the sum of two integrals (total energy release

rate) does converge.
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2.3. Total energy release rates

In [27], the central difference approximation (14) was discarded because of the following reasons: (a) the
computation involves differences of large numbers divided by a small number and hence the resulting value

is not accurate; (b) this procedure involves two runs of a FE code.

However, in this paper, Eq. (14) is employed to estimate the total energy release rate. Moreover, it is

shown that CDA approach (14) is even better than the VCCT approach in computations of total energy

release rates. In fact, unlike the p-FEM with respect to geometric mesh, the CDA approach is not realistic

for the h-version of the FEM(h-FEM) because it is too expensive to make D sufficiently small.
2.4. D-Dependence of the numerical definitions of mode-separated energy release rates

Applying the VCCT to compute the energy release rate, from Eqs. (16) and (17), numerical definitions of

GI and GII obviously depend on the size of D. However, the D-dependence are as follows:

• (Homogeneous materials) if a cracked body consists of homogeneous material, the line integrals of the

definitions are of the form

1

2D

Z D

0

Oð
ffiffiffiffiffiffiffiffiffiffiffiffi
D� x
p

=
ffiffiffi
x
p
Þ dx:

And it becomes

Z p=2

0

Oðcot tÞ sin 2t dt;

by the substitution x ¼ D sin2 t. Hence, the mode-separated energy release rates (16) and (17) are

D-independent.
• (Heterogeneous materials) On the other hand, if a crack is along the interface of two dissimilar ma-

terials, displacement functions and stress tensor are oscillating singular near the crack tip and the in-

tegrand is of the form Oð½
ffiffiffiffiffiffiffiffiffiffiffiffi
D� x
p

=
ffiffiffi
x
p � � sinðe log

ffiffiffiffiffiffiffiffiffiffiffiffi
D� x
p

Þ cosðe log xÞÞ, where e is known as the

oscillating factor. Because of the oscillating behavior, the mode-separated energy release rates GI

and GII are D-dependent; hence, the convergence should be determined. Actually, it has been known

in the computational mechanics community [2,12,19,21,26] that GI and GII of bimaterial interface

cracks do not converge.

Conventional methods to compute the energy release rates use nodal forces ahead of the crack tip and
relative displacements behind the crack tip (Irwin�s argument) with quarter-point singular elements in the

framework of the h-FEM. On the other hand, our method is to use MAM (introduced in Section 3.2 and

Appendix A) in the framework of the p-FEM and the technical Lemmas for line integral developed in

Section 3.3 (however, this method is not effective for the h-FEM with linear basis functions).
3. A new approach to compute energy release rates

For brevity, we consider GI in two-dimensional case. Let us consider the line integral

1

2D

Z D

ryðx; 0Þduyðx� D; 0Þ dx; ð18Þ

0
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where duyðx� D; 0Þ ¼ ½uyðD� r; pÞ � uyðD� r;�pÞ� is the relative displacement. Suppose the stress tensor

ry and the y-displacement uy are oscillating singular functions. Then in order to get accurate energy release

rate, we have to overcome the following problems:
• Low accuracy of FE solutions in the presence of the singularities and the poor approximability due to

the oscillating factor e.
• Low accuracy in numerical integrations of singular functions. The FE solutions of ry and duy obtained

by our method are singular.
3.1. Auxiliary mappings

In what follows, XS denotes a small neighborhood of a the crack tip and XR ¼ X \ ½XS�C. Then XS and
XR are called a singular subregion and a regular subregion, respectively. In order to deal with those

problems mentioned above, we introduce an auxiliary mapping that maps the neighborhood XS in the x–y
plane into the domain X̂XS in the x̂x–ŷy plane. Now, we define the power auxiliary mapping (PAM)

ub
pow : X̂XS ! XS by

ub
powðx̂x; ŷyÞ ¼ ðr̂rb cosðbĥhÞ; r̂rb sinðbĥhÞÞ; ð19Þ

where ðr̂r; ĥhÞ is the polar coordinates of ðx̂x; ŷyÞ. The constant bP 1 is a positive real number, which will be

called the mapping size of the auxiliary mapping.

For example, suppose b ¼ 2, then we have

r1=2 sinð0:15 log rÞ
� �

� u2
powðr̂r; ĥhÞ ¼ r̂r sinð0:3 log r̂rÞ:

One clearly see that the transformed functions by the auxiliary mapping is much smoother than the

original function.
3.2. New method for accurate economical FE solutions

Finite element meshes DðXÞ of X are partitions of the domain X into triangular or quadrilateral elements

Ek; k ¼ 1; . . . ;NðDÞ. Elemental mappings are bijective mappingsWk from the reference element Xð�Þst onto the

kth element Ek 2 DðXÞ, where Xð�Þst stands for either the reference quadrilateral element XðqÞst or the reference

triangular element XðtÞst (see Fig. 1 and Appendix A.1.3 for definitions). Then the finite element space

SpðX;D; fWkgÞ for FE-solutions is determined by

• the finite element meshes DðXÞ of X,
• the elemental mappings Wk : X

ð�Þ
st ! Ek for k ¼ 1; . . . ;NðDÞ,

• the basis functions that span PpðXð�Þst Þ which denotes the set of all polynomials of degree 6 p defined on
Xð�Þst .

This is, the finite element space is

SpðX;D; fWkgÞ ¼ fu : kuk1 <1; uðWkðn; gÞÞ 2 PpðXð�Þst Þ for all Ek 2 DðXÞg;

where fWkg is the vector of elemental mappings from the reference element Xð�Þst onto the elements Ek.

In standard FEM, the elemental mappings Wk usually are of polynomial type (smooth). However, unlike

the standard one, in the proposed method (MAM), we assign singular bijective elemental mappings WS
k

(defined below) to those elements surrounding the crack tips. This is the only difference between the

standard FEM and our method.



Fig. 1. Schemes of neighborhood XS of crack tip, the mapped neighborhood X̂XS, the singular elemental mappings WS
5ðn; gÞ ¼

ðu2
pow � ŴW5Þðn; gÞ and WS

9ðn; gÞ ¼ ðu2
pow � ŴW9Þðn; gÞ. Here r ¼ h0=2.
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The FE solution vector fugfe of Eq. (7) is in ½SpðX;D; fWkgÞ�2. The dimension of the vector space

½SpðX;D; fWkgÞ�2 is called the Number of Degree of Freedom. Let us note that in the p-version of FEM, the

mesh DðXÞ of the domain X is fixed and only the degree p of the basis polynomials is increased to obtain the

desired accuracy.
3.2.1. Construction of meshes for the neighborhoods of the crack tips

Let XS ¼ fðr; hÞ : r6 h0=2g � ½�h0; h0� � ½�h0; h0� be a neighborhood of the crack tip, where h0 is the

layer thickness. For example, partition XS into eight triangular elements and 16 quadrilateral elements as
shown in Fig. 1. More specifically,

(i) let r1 ¼ h0=2; r2 ¼ r1q; r3 ¼ r1q2, where the ratio q is ð
ffiffiffi
2
p
� 1Þ2 ¼ 0:17 which is known to be an opti-

mal choice for a geometric mesh for the p-FEM (Chapter 4 of [23]).

(ii) Let r̂ri ¼
ffiffiffi
ri
p

; i ¼ 1; 2; 3. Then P̂P1 ¼ ð0; 0Þ; P̂Pj ¼ ðr̂r3; ðj� 2Þ � p=8Þ; j ¼ 2; 3; 4; 5; 6; P̂Pj ¼ ðr̂r3; ðj�
7Þp=8� p=2Þ; j ¼ 7; 8; 9; 10; P̂Pj ¼ ðr̂r2; ðj� 11Þ � p=8Þ; j ¼ 11; . . . ; 15; P̂Pj ¼ ðr̂r2; ðj� 16Þp=8� p=2Þ;
j ¼ 16; . . . ; 19; P̂Pj ¼ ðr̂r1; ðj� 20Þ � p=8Þ; j ¼ 20; . . . ; 24; P̂Pj ¼ ðr̂r1; ðj� 25Þp=8� p=2Þ; j ¼ 25; . . . ; 28
are the polar coordinates for nodes in X̂XS.

It is possible to construct a geometric mesh for XS with straight sides as usual. However, the corre-
sponding sides in X̂XS are still curved. For example, the parametrization of the curved side ðx̂xð1Þ1 ; ŷyð1Þ1 Þ of Eq.
(A.6) is given by

x̂xð1Þ1 ; ŷyð1Þ1

� �
ðnÞ ¼ u2

pow

� ��1
½W1ðn; 0Þ�; ð20Þ

where W1 is the usual bilinear elemental mapping from XðtÞst ! E1.
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3.2.2. The construction of singular elemental mappings for those elements in the neighborhood of the crack tip

Let Ek be the elements in XS and ÊEk ¼ ðu2
powÞ

�1ðEkÞ be the corresponding elements in X̂XS. Let ŴW
ð�Þ
k be the

conventional elemental mapping of blending type from the reference element Xð�Þst to ÊEk defined by Eqs.

(A.6) and (A.7). Now, we define the singular elemental mappings WS
k : X

ð�Þ
st ! Ek, by the composition of the

power auxiliary mapping and the conventional elemental mapping ŴWð�Þk :

Ek  
u2
pow

ÊEk  
ŴWð�Þk Xð�Þst :

Let us note that if �ff ðs; tÞ 2 PpðXð�Þst Þ, then ½ �ff � ðWS
kÞ
�1�ðx; yÞ become singular shape functions on Ek which

resemble the crack singularity.
3.2.3. Finite element space for MAM

Let DðXÞ ¼ DðXSÞ [ DðXRÞ denotes a specific mesh on X ¼ XS [ XR;X
�

S
\ X
�

R
¼£, where DðXSÞ is the

mesh in Fig. 1 and DðXRÞ denotes a quasi-uniform mesh on XR that is compatible with the mesh DðXSÞ.
Suppose fWk : k ¼ 1; . . . ;NðDÞg is the vector of elemental mappings assigned to each element Ek 2 DðXÞ by
the following rules:

• the singular elemental mapping WS
k to elements Ek 2 DðXSÞ(the singular zone XS); and

• the conventional polynomial elemental mapping Wk to the elements Ek 2 DðXRÞ (the regular zone XR).

In the constructions of regular elemental mappings of blending type (Appendix A.1.3), the elemental

mapping for eight quadrilateral elements Ek, k ¼ 25; . . . ; 32 in ½�h0; h0� � ½�h0; h0� (those elements sur-

rounding XS in Fig. 1) and the singular elemental mappings WS
k of the outermost eight quadrilateral ele-

ments Ek, k ¼ 17; . . . ; 24 of the singular zone XS agree along their common circular sides (see Fig. 1).
Thus, we obtain exactly and minimally conforming (p. 38 of [23]) finite element space.
3.2.4. Implementing this method

The accurate FE solutions are obtained by solving the linear systems whose stiffness matrices and load

vectors are computed in the following ways.

Local stiffness matrices. By (7), (A.1), (A.2), and Lemma A.1, the ði; jÞ component of the stiffness matrix

is as follows:

Aij ¼ BðfUgi; fUgjÞ ¼
Z
X
ð½D�fUgjÞ

T½E�ð½D�fUgiÞ dx dy; ð21Þ

¼
Xn
k¼1

Z
Ek

ð½D�fUgjÞ
T½E�ð½D�fUgiÞ dx dy; ð22Þ

¼
Xn
k¼1

Z
Ek

ðrUjÞT
Ek1s1 Ek1s2

Ek2s1 Ek2s2

" #
ðrUiÞ dx dy; ð23Þ

where Uj 2 SpðX;DðXÞ; fWkgÞ. From the construction of basis function Uj through the vector fWkg of the
elemental mappings (master element approach), we have

UjjEk
ðx; yÞ ¼

N
ðkÞ
j WS

k

� ��1ðx; yÞ� �
if Ek � XS ðsingular zoneÞ;

N
ðkÞ
j ð½Wk��1ðx; yÞÞ if Ek � XR ðregular zoneÞ

8<
: ð24Þ

for a basis function N
ðkÞ
j 2 PpðXð�Þst Þ. Hence, it follows from Lemma A.2 that the corresponding component

in local stiffness matrix on the element Ek is as follows:
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• If Ek is an element in the singular zone XS,

AijjEk
¼
Z
Ek

ðrxUjÞT
Ek1s1 Ek1s2

Ek2s1 Ek2s2

� �
ðrxUiÞ dx dy

¼
Z
Xð�Þst

J WS
k

	 
�� �� J WS
k

	 
�1rnN
ðkÞ
j

� �T
� Ek1s1 Ek1s2

Ek2s1 Ek2s2

� �
� J WS

k

	 
�1rnN
ðkÞ
i

� �
dn dg

¼
Z
ÊEk

J u2
pow

� ���� ���rx̂x N
ðkÞ
i � ŴW�1k

� �T
� J u2

pow

� ��1� �T

� Ek1s1 Ek1s2

Ek2s1 Ek2s2

� �

� J u2
pow

� ��1� �
rx̂x N

ðkÞ
i � ŴW�1k

� �
dx̂x dŷy

¼
Z
ÊEk

rx̂x N
ðkÞ
j � ŴW�1k

� �� �T
� Q11 Q12

Q21 Q22

� �
� rx̂x N

ðkÞ
i � ŴW�1k

� �
dx̂x dŷy

¼
Z
Xð�Þst

jJðŴWkÞj JðŴWkÞ�1rnN
ðkÞ
j

� �T
� Q11 Q12

Q21 Q22

� �
� JðŴWkÞ�1rnN

ðkÞ
i

� �
dn dg;

where
ðx̂xk; ŷykÞ ¼ ŴWkðn; gÞ;
r̂r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂x2k þ ŷy2k

p
;

ĥh ¼ sin�1 ŷy
r̂r ;

t ¼ ð1� bÞĥh; where b ¼ 1
2
is the mapping size;

Q11 ¼ Ek1s1 cos
2 t þ Ek2s2 sin

2 t � ðEk2s1 þ Ek1s2Þ sin t cos t;
Q12 ¼ ðEk1s1 � Ek2s2Þ sin t cos t � Ek2s1 sin

2 t þ Ek1s2 cos
2 t;

Q21 ¼ ðEk1s1 � Ek2s2Þ sin t cos t � Ek1s2 sin
2 t þ Ek2s1 cos

2 t;
Q22 ¼ Ek1s1 sin

2 t þ Ek2s2 cos
2 t þ ðEk1s2 þ Ek2s1Þ sin t cos t;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

WS
k ðn; gÞ ¼ ðu2

pow � ŴWkÞðn; gÞ is the singular elemental mapping and ŴWkðn; gÞ ¼ ðx̂xkðn; gÞ; ŷykðn; gÞÞ is the
regular elemental mapping of blending type from Xð�Þst to ÊEk (defined by (A.6) and (A.7)). In other words,

AijjEk
is computed by using the transformed bilinear form (A.4).

• If Ek is an element in the regular zone XR,

AijjEk
¼
Z
Ek

ðrxUjÞT
Ek1s1 Ek1s2

Ek2s1 Ek2s2

� �
ðrxUiÞ

¼
Z
Xð�Þst

jJðWkÞj JðWkÞ�1rnN
ðkÞ
j

� �T
� Ek1s1 Ek1s2

Ek2s1 Ek2s2

� �
� JðWkÞ�1rnN

ðkÞ
i

� �
dn dg;
where Wk is the conventional elemental mapping.

Local Load vectors. The computation of the local load vector on the element Ek is similar. Let

bj ¼
Xn
k¼1

Z
Ek

ffx; fygfUj; 0gT dx dy ¼
Xn
k¼1

Z
Ek

fxUj dx dy:

Then the jth component of the local load vector on Ek is as follows:
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• If Ek is an element in the singular zone XS,

bðkÞj ¼
Z
Ek

fxUj dx dy ¼
Z
ÊEk

J u2
pow

� ���� ��� fx � u2
pow

� �
Uj � u2

pow

� �
dx̂x dŷy

¼
Z
Xð�Þst

J WS
k

	 
�� ��f WS
k ðn; gÞ

	 

N
ðkÞ
j

� �
dn dg:

• If Ek is an element in the regular zone XS,

bðkÞj ¼
Z
Xð�Þst

jJðWkÞjf ðWkðn; gÞÞ N
ðkÞ
j

� �
dn dg:

In other words, this method uses the conventional finite element method to those elements ÊEk 2 X̂XS with

the transformed bilinear form, (A.4), and the transformed linear functional, (A.5) (the mapped principal of

virtual work), instead of constructing the singular basis functions for the local stiffness matrices and local
load vectors for those elements in Ek 2 XS. Thus, this method requires virtually no extra cost.

Remark. (1) Instead of PAW in constructing the singular element mappings, we may use the exponential

auxiliary mapping (EAM) ub
exp : X̂XS ! XS defined by

uðb1;b2Þexp ðx̂x; ŷyÞ ¼ ðeb1 x̂x cosðb2ŷyÞ; eb1 x̂x sinðb2ŷyÞÞ: ð25Þ

Suppose b1 ¼ 2; b2 ¼ 0:25, then we have

r1=2 sinð0:15 log rÞ
� �

� uð2;0:25Þexp ¼ ex̂x sinð0:3ŷyÞ:

The transformed function by EAM is also much smoother than the original function.

(2) In order to destroy the log-type singularity, we can take advantage of the EAM. However, this map

transforms a neighborhood XS of the crack tip onto an infinite domain X̂XS; hence, the methods (for ex-

ample, infinite elements introduced in [11,15]) to deal with unbounded domains need to be considered. If

either the order of singularity a of the ra sinðe log rÞ-type singularity is unknown or the oscillating factor e is
large (for example, e > 1), the EAM is more advantageous than the PAM. However, if the order (intensity)

of the singularity is known and the oscillating factor is small, two auxiliary mapping yields almost the same
results [11]. It is known that a ¼ 1=2 for the crack singularity and the maximum value of the oscillating

factor e for homogeneous bimaterials is 0.17 [26]. Furthermore, it was shown [22] that for most practical

orthotropic materials, e is small. Hence, throughout this paper, we use the PAM.

(3) The number of Gauss points for the numerical results of this paper is 12 for each p-degree. The results
in Section 3.3 for the line integral are not necessarily implemented whenever sufficient number of Gauss

points are used. For example, the interval of integration is divided into 10 smaller intervals and the

Gaussian quadrature is applied with 12 Gauss points on each subinterval. Thus, implementing the results in

the next section to our method is optional.

3.3. Line integral of singular functions (optional)

The displacement vectors and the stress functions obtained by our method are singular on the singular

zone XS. Thus, we have to calculate the line integrals in (16) and (17) with respect to singular functions. In

this section, we will show that by change of variables, the line integral of a singular function can be re-

written as a line integral of a smooth function.

Let ûu be the transformed function of u by the power auxiliarymappingu2
pow (that is, ûu ¼ u � u2

pow). Let ðuxÞfe
and ðuyÞfe be FE solutions for the x-displacement and the y-displacement, respectively, that are obtained by

our method. Then the displacement functions are singular, however, ðûxuxÞfe and ðûyuyÞfe are smooth functions.
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From the standard arguments, with respect to the power auxiliary mapping u2
powðx̂x; ŷyÞ of the mapping

size 2, we have

dx ¼ dx
dx̂x

dx̂xþ dx
dŷy
¼ J11 dx̂xþ J12 dŷy;

dy ¼ dy
dx̂x

dx̂xþ dy
dŷy
¼ J21 dx̂xþ J22 dŷy;

where

J11 ¼ 2r̂r cos ĥh; J12 ¼ 2r̂r sin ĥh;

J21 ¼ �2r̂r sin ĥh; J22 ¼ 2r̂r cos ĥh:

Furthermore, if we let v̂vðx̂x; ŷyÞ ¼ v � u2
powðx̂x; ŷyÞ, then by chain rule, we have

ov
ox

;
ov
oy

 �T

¼ ½Jij��1 �
ov̂v
ox̂x

;
ov̂v
oŷy

( )T

; ð26Þ

where

½Jij��1 ¼
1

2r̂r
cos ĥh � sin ĥh
sin ĥh cos ĥh

� �
: ð27Þ

Let ½Eij� be a 3� 3 symmetric positive definite matrix of material constants in the stress–strain relation

frðuÞg ¼ ½Eij�feðuÞg. Then, we have the following lemma showing that the line integrals for the energy release

rates can be calculated by a line integral of a smooth function.

Lemma 3.1.

Z D

0

ryðx; 0ÞuyðD� x; pÞ dx ¼ p
4

Z 1

�1
F

oûux
ox̂x

;
oûux
oŷy

;
oûuy
ox̂x

;
oûuy
oŷy

 !
ð
ffiffiffiffi
D
p

sin T ; 0Þ
" #

� ûuyð0;
ffiffiffiffi
D
p

cos T Þ
h i

½
ffiffiffiffi
D
p

cos T � dn;

where T ¼ ðp=4Þðnþ 1Þ and

F
oûux
ox̂x

;
oûux
oŷy

;
oûuy
ox̂x

;
oûuy
oŷy

 !
:¼ ðE21 cos ĥh

"
þ E23 sin ĥhÞ

oûux
ox̂x
þ ð � E21 sin ĥhþ E23 cos ĥhÞ

oûux
oŷy

þ ðE22 sin ĥhþ E23 cos ĥhÞ
oûuy
ox̂x
þ ðE22 cos ĥh� E23 sin ĥhÞ

oûuy
oŷy

#
: ð28Þ

Proof. From (26) and the stress–strain relation, we have

r̂ryðx̂x; ŷyÞ ¼
1

2r̂r
F

oûux
ox̂x

;
oûux
oŷy

;
oûuy
ox̂x

;
oûuy
oŷy

 !
ðx̂x; ŷyÞ; ð29Þ
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where F ð�; �; �; �Þ is defined by (28). Since dŷy ¼ 0 along the x̂x-axis,

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ11dx̂xÞ2 þ ðJ12dx̂xÞ2

q
¼ 2r̂rdx̂x ð30Þ

along ĥh ¼ 0.

Let g be a function defined by gðx; yÞ ¼ ðD� x; yÞ. Then

uy � g � u2
powðr̂r; ĥhÞ ¼ uy � u2

pow � u2
pow

� ��1
� g � u2

powðr̂r; ĥhÞ

¼ uy � u2
pow � u2

pow

� ��1
� g � ðr̂r2; 2ĥhÞ

¼ ûuy � u2
pow

� ��1
ðD� r̂r2; 2ĥhÞ

¼ ûuyð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� r̂r2
p

; ĥhÞ: ð31Þ

And also note that through the auxiliary mapping u2
pow, the lines h ¼ p and h ¼ �p are mapped to the line

ĥh ¼ p=2 and ĥh ¼ �p=2, respectively, in the x̂x–ŷy plane.

Then from (28)–(31), we haveZ D

0

ryðx; 0ÞuyðD� r; pÞ ds ¼
Z D

0

ryðx; 0Þuy � gðr; pÞ ds

¼
Z ffiffiffi

D
p

0

ry � u2
powðx̂x; 0Þ

h i
uy � g � u2

powðx̂x; p=2Þ
h i

2r̂r dx̂x

¼
Z ffiffiffi

D
p

0

r̂ryðx̂x; 0Þûuyð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� x̂x2
p

;p=2Þ2r̂r dx̂x

¼
Z ffiffiffi

D
p

0

F
oûux
ox̂x

;
oûux
oŷy

;
oûuy
ox̂x

;
oûuy
oŷy

 !
ðx̂x; 0Þûuyð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� x̂x2
p

; p=2Þ dx̂x

¼
Z ffiffiffi

D
p

0

F
oûux
ox̂x

;
oûux
oŷy

;
oûuy
ox̂x

;
oûuy
oŷy

 !
ðx̂x; 0Þûuyð0;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� x̂x2
p

Þ dx̂x: ð32Þ

By the substitution x̂x ¼
ffiffiffiffi
D
p

sin t, the forgoing line integral becomesZ p=2

0

F
oûux
ox̂x

;
oûux
oŷy

;
oûuy
ox̂x

;
oûuy
oŷy

 !
ð
ffiffiffiffi
D
p

sin t; 0Þ
" #

ûuyð0;
ffiffiffiffi
D
p

cos tÞ
h i

½
ffiffiffiffi
D
p

cos t� dt:

By the substitution t ¼ ðp=4Þðnþ 1Þ, we have the lemma. �

For the line integral, ûuy is evaluated along the straight side Sð4Þ2 	 6! 1 of the curved triangular element

ÊE4 	 5! 6! 1 of X̂XS (see Fig. 1) and oûux=ox̂x, oûux=oŷy, oûuy=ox̂x, oûuy=oŷy are evaluated along the straight side

Sð1Þ3 	 1! 2 of the curved triangular element ÊE1 	 2! 3! 1 of X̂XS (see Fig. 1).

The FE approximations of ûux and ûuy can be expressed of the form

Xmk

l¼1
alð/l � ðŴWkÞ�1Þðx̂x; ŷyÞ;

where /l is a polynomial basis function in the reference element XðtÞst . Generally, the elemental mapping ŴWk

of blending type is a rational function (see A.6). However, it will be shown in the following lemma that the

integrand of the transformed line integral in Lemma 3.1 is polynomial function.
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From now on, by abusing notations, the FE approximations of ûux and ûuy will be denoted by ûux and ûuy ,
respectively.

Lemma 3.2. The elemental mapping of blending type defined by ðA.6Þ is linear on the second and the third

sides of the reference triangular element. Hence the finite element solutions ûux and ûuy of displacement functions

are polynomial functions along these sides.

Proof. Consider the elemental mapping, ŴW1, of blending type from the reference triangular element to a

transformed element ÊE1:

ŴW1 : X
ðtÞ
st ¼ DV ðtÞ1 V ðtÞ2 V ðtÞ3 ! ÊE1 ¼ DV̂V1V̂V2V̂V3 � X̂XS: ð33Þ

In the definition of the blending mapping (A.6), the term, 4L1L2, is vanishing along the side SðstÞ2 	
V ðtÞ2 ! V ðtÞ3 and the side SðstÞ3 	 V ðtÞ3 ! V ðtÞ1 of XðtÞst . Therefore, along the sides SðstÞ2 and SðstÞ3 ; the elemental

mapping ŴW1 becomes linear

ŴW1ðx̂x; ŷyÞ ¼ ½V̂V1L1 þ V̂V2L2 þ V̂V3L3�ðx̂x; ŷyÞ;

where L1; L2; L3 are the standard linear basis functions (see Appendix A.1.3). Similarly, the element mapping

ŴW4 : X
ðtÞ
st ! ÊE4 � X̂XS (Fig. 1) is also linear along the sides SðstÞ2 and SðstÞ3 . Thus, for this line integral,

ðŴW1Þ�1 and ðŴW4Þ�1 are linear and hence /l � ðŴWkÞ�1ðx̂x; ŷyÞ; k ¼ 1; 4 are polynomials. Here /l stands for a

polynomial basis function in XðtÞst . �
4. The energy release rates for interlaminar cracks between two weakly dissimilar materials

Throughout this paper, E and m denote the modulus of elasticity and Poisson�s ratio, respectively.

k ¼ Em=ðð1þ mÞð1� 2mÞÞ and l ¼ E=ð2ð1þ mÞÞ are Lame�s constants.
Let us consider an interface crack of a bimaterial plate that consists of material 1 with elastic constants

l1 and m1 and material 2 with elastic constants l2 and m2. Then the oscillating factor, which represents the

order of discontinuity of the two materials, is given by

e ¼ 1

2p
ln

l1 þ l2j1

l2 þ l1j2

� �
; ð34Þ

where for i ¼ 1; 2, ji ¼ 3� 4mi for plane strain, ji ¼ ð3� miÞ=ð1þ miÞ for plane stress.

Without loss of generality, e may be assumed to be positive and it is zero for a homogeneous plate.

Moreover, it takes the maximum value ln 3=ð2pÞ ¼ 0:17485 when m1 ¼ 0 and l2 ¼ 1. Due to their oscil-

latory nature, the mode-separated energy release rates for interface cracks of bimaterials do not converge as

D! 0, in general.

Suppose a fiber-reinforced material is a laminate whose layers are of the same material and may have

different fiber orientation. Then it can be proved by using similar arguments to those in [16,24,25] that the
oscillating factors of interlaminar cracks of such laminates are expected to be very small. In other words,

the mode-separated energy release rates (16) and (17) for such fiber-reinforced materials are virtually

constant when

10�9 6
D
h
6 10�1;

where h denotes the thickness of layers. Moreover, if D
h 6 10�9, then D is smaller than the diameter of the

fiber; hence, the D-neighborhood of the crack tip does not contain any fiber, unless we are concerned with
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the nano-technology. In other words, the D-neighborhood of a crack consists of a homogeneous material

(resin only); hence, we may claim that e ¼ 0 whenever D=h6 10�9. In Section 5, we will confirm the fol-

lowing:
• The mode-separated energy release rates for the cracks of a laminate virtually converge when its layers

are of the same material and may have different fiber orientations (Tests (A) and (B) of Example 5.4).

However, those results presented in [2] are different from this result.
5. Computational results

In this section, we will apply our method to compute energy release rates for
ð1Þ cracks in homogeneous isotropic materials;
ð2Þ cracks in isotropic bimaterials;
ð3Þ interlaminar cracks of fiber-reinforced orthotropic materials:

8<
:

5.1. Cracks in homogeneous materials

Since the displacement functions near crack tip of homogeneous isotropic materials are non-oscillating

singular functions, the mode-separated energy release rates converge. In this section, the mapping method

(MAM) in the framework of the p-FEM yields better results than the conventional method that use

quarter-point singularity elements in the framework of the h-FEM.
It is known that the Mode I energy release rate is expressed in terms of the stress intensity factor KI as

follows:

GI ¼
K2
I

E for plane stress;

GI ¼
ð1�m2ÞK2

I

E for plane strain;

(
ð35Þ

where m and E are Poisson�s ratio and Young�s modulus, respectively. The expression of GII in terms of KII is

similar. In this section, we assume that m ¼ 0:3;E ¼ 106 and the computations are for plain strain. UðufeÞ
denotes the strain energy of ufe.

Example 5.1. Center-cracked tension specimen: We consider a center-cracked plate ½�b; b� � ½�k; k� with
crack length 2a under uniform tension S as shown in Fig. 2(a). Then by Appendix 2.1 of [6], the mode I
stress intensity factor is

KI ¼ S
ffiffiffiffiffiffi
pa
p
f1:0þ 0:128ða=bÞ � 0:288ða=bÞ2 þ 1:523ða=bÞ3g; ð36Þ

when 0 < a=b < 0:7.

In the first example, we choose S ¼ 100, b ¼ 1:0; a ¼ 0:8; k ¼ 2. Then by Eqs. (35) and (36), we obtain
GI ¼ 0:0754556.

From the symmetries in the problem, only one-quarter of the specimen was analyzed. Fig. 2(c) is a mesh

for p-FEM which consists of four triangular elements and 15 quadrilateral elements. For a neighborhood

XS of the crack (the mapping zone) for our method, we select the inner most four triangular elements and



Fig. 2. Schemes of (a) center-cracked tension (CCT) specimen, (b) single edge-notched (SEN) specimen, (c) finite element mesh of one-

quarter of CCT specimen, (d) finite element mesh of SEN specimen.
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the four quadrilateral elements surrounding the triangular elements. This specimen is analyzed in the

following aspects:

• The mode I energy release rate GI by our method.

• The mode I energy release rate GðIÞ by the conventional p-FEM without using our method (that is, the

mapping size of the auxiliary mapping defined by (19) is b ¼ 1).

• The total energy release rate by applying central difference approximation to the strain energy computed
by our method.

• The convergence of total strain energy computed by our method.
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We have observed the followings:

(1) Table 1 shows that the relative error of the best GIðp ¼ 9Þ is 0.02%. Nevertheless, the best GI in [17]

(obtained by using cubic singularity elements) has 0.3% in the relative error.
(2) By comparing GI and GðIÞ from Table 1, one can see the superiority of our method over the conven-

tional p-FEM (that is, 0.02% versus 11% in relative error when p ¼ 9).

Relative errors in percent of the total strain energy (which indicates the error of FE solutions, section 4.2

of [23]), GI;GðIÞ, and Gtotal ¼ GI þ GII are depicted in Fig. 3.

Example 5.2 ðSingle edge-notched specimen (SENS)). The second example is single edge-notched plate

½�a; b� a� � ½�k; k� under uniform tension S as Fig. 2(b). It is known [6] that the mode I stress intensity

factor for single edge-notched plate is

KI ¼ S
ffiffiffiffiffiffi
pa
p
f1:12� 0:23ða=bÞ þ 10:55ða=bÞ2 � 21:72ða=bÞ3 þ 30:39ða=bÞ4g; ð37Þ

whenever 0 < a=b < 0:7.
Table 1

Computation of one-fourth of center-cracked plate ½�b; b� � ½�k; k� with crack length 2a under uniform tension S ¼ 100, where in this

computation b ¼ 1:0; a ¼ 0:8; k ¼ 2; E ¼ 106. GI and GðIÞ are the mode I energy release rates obtained by the new method and by the

conventional p-FEM, respectively. Gtotal is computed by the central difference approximation (14) with D ¼ 0:5� 10�8. The row ‘‘1’’

indicates the exact values

p DOF UðuFEÞE=4 GI GðIÞ Gtotal

1 52 15237.9432999 0.0953976 0.0320149 0.0534118

2 140 16988.7410759 0.0643846 0.0561566 0.0738187

3 236 17078.9934190 0.0719215 0.0577928 0.0753140

4 370 17109.7839910 0.0745717 0.0595203 0.0754432

5 542 17119.5240645 0.0751520 0.0616602 0.0754757

6 752 17121.9398467 0.0752964 0.0633685 0.0754742

7 1000 17122.5523856 0.0753812 0.0648338 0.0754758

8 1286 17122.6845944 0.0754230 0.0660116 0.0754776

9 1610 17122.7069546 0.0754441 0.0669814 0.0754783

1 1 17122.7105178 0.0754556 0.0754556 0.0754782

Fig. 3. Relative error (%) of ‘‘Energy’’ (total strain energy), GI; GðIÞ (Mode I energy release rate without applying the new method),

Gtotal of CCT specimen.
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In this example, we use the crack length a ¼ 0:55 and b ¼ 1:0; k ¼ 2:0, and the remote uniform traction

load is S ¼ 100. Then by Eqs. (35) and (37), we obtain KI ¼ 440:6271928 and GI ¼ ð1� m2ÞK2
I =

E ¼ 0:176678.
Fig. 2(d) is a finite element mesh for our method which consists of eight triangular elements and 28

quadrilateral elements. For the mapping zone XS (the neighborhood of the crack tip) for our method, we

select the inner most eight triangular elements and the inner most eight quadrilateral elements surrounding

the triangular elements. The SENS was analyzed in the same ways as the previous example. The results are

displayed in Table 2, from which we have the following conclusions:

(1) Table 2 shows that the relative error of GI is 0.6% when p ¼ 9. However, the best GI in [17] (obtained by

using cubic singularity elements) has 3.3% in the relative error.

(2) By comparing GI and GðIÞ from Table 2, once again, one can see the superiority of the mapping method
over the conventional p-method (i.e., 0.6% versus 11.8% in relative error when p ¼ 9).

Relative errors in percent of the total energy, GI (obtained by using our method), GðIÞ (obtained without

using our method), and Gtotal are depicted in Fig. 4.

5.2. Interfacial cracks between isotropic layers

In this section, we consider an interface crack of a bimaterial plate that consists of material 1 with elastic

constants l1 and m1 and material 2 with elastic constants l2 and m2. Then, it is known that the mode-
separated energy release rates for interface cracks of bimaterials do not converge as D! 0. In fact, if the

oscillating factor e is not very small, GI is increasing (decreasing) while GII is decreasing (increasing), re-

spectively, as D! 0.

Example 5.3 ðIsotropic bimaterial plate). Let us consider a bimaterial of epoxy and glass [10] shown in

Fig. 5 such that the material properties are as follows:

E1 ¼ 1:72 Gpa; m1 ¼ 0:4 ðepoxyÞ;
E2 ¼ 68:95 Gpa; m2 ¼ 0:2 ðglassÞ:

ð38Þ

Then from (34), e ¼ 0:0486476.
Table 2

Plain strain computation for single edge-notched plate½�a; b� a� � ½�2; 2� under uniform tension S ¼ 100, where a ¼ 0:55 is the crack

length, b ¼ 1:0, and E ¼ 106. GI and GðIÞ are the mode I energy release rates obtained by the new method and the conventional p-FEM,

respectively. Gtotal is computed by the central difference approximation (14) with D ¼ 0:5� 10�8. The row ‘‘1’’ indicates the exact

values

p DOF UðuFEÞE GI GðIÞ Gtotal

1 80 31156.9824930 0.1502874 0.0555432 0.0979730

2 222 38163.5473336 0.1501532 0.1270484 0.1648749

3 380 38628.4771876 0.1579704 0.1283439 0.1702329

4 602 39122.5168253 0.1721155 0.1378598 0.1747564

5 888 39189.0227303 0.1750825 0.1432396 0.1756045

6 1238 39197.2704305 0.1754222 0.1473620 0.1756870

7 1652 39198.3009764 0.1754423 0.1507687 0.1757009

8 2130 39198.4857040 0.1755709 0.1535316 0.1757021

9 2672 39198.5111936 0.1756254 0.1558046 0.1757029

1 1 39198.5156205 0.1766780 0.1766780 0.1766780



Fig. 4. Relative error (%) of ‘‘Energy’’ (total strain energy), GI; GðIÞ (Mode I energy release rate without applying the new method),

Gtotal of SEN specimen.

Fig. 5. Scheme of the isotropic bimaterial and finite element mesh (dotted lines).
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In this example, the sizes of a bimaterial specimen are chosen as follows: the crack length is

a ¼ 0:75 dm; a ¼ b; u0 ¼ 0; v0 ¼ 6:65 lm, and the layer thickness are h1 ¼ h2 ¼ 0:1 dm. The mesh for

finite element analysis of this problem is shown as the dotted lines in Fig. 5. We assume the load vector

ff g ¼ f0; 0gT and the boundary conditions are assigned as follows: fug ¼ f0; 0gT along the side CDE
(Fig. 5); fug ¼ f0; v0gT along the side FGH ; free along all the other parts of boundaries.

From Fig. 6, one can see that GI is decreasing and GII is increasing as D! 0. In general, the smaller the

oscillating factor e is, the flatter the curve drawn in D versus GI=Gtotal (see [26]). Moreover, it was shown in
[26] that the graphs of GI=Gtotal and GII=Gtotal with respect to D are straight lines with small slopes when the

oscillating factor e is 0.001.



Fig. 6. Finite element analysis of GI and GII for isotropic bimaterial when the oscillating factor e ¼ 0:0486.
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5.3. Interfacial cracks between orthotropic layers

In Section 5.2, we showed that the mode-separated energy rates for interface cracks for isotropic

bimaterials do not converge.

In this section, we consider the interlaminar cracks of laminates of fiber-reinforced layers. If layers are of
the same material and its fiber directions are different, the oscillating factor e (the order of discontinuity

between layers) expected to be very small.

For various tests of interlaminar cracks of laminates that consist of fiber-reinforced layers with various

fiber angles, GI and GII are virtually constant when 10�9 < D=h < 10�1, where h is the thickness of the

layers. Moreover, if D=h < 10�9, then the crack tip is well inside the homogeneous materials(resin). In other

words, in fiber-reinforced composite materials, if D is very small, then physics of the D-neighborhood of the

material is changed from orthotropic (fiber and resin) to isotropic (resin only). Hence, the oscillating factor

e is 0 for such case (see Table 3).
In order to compare the results obtained by our method with the results reported in [2], the engineering

properties of ply with unidirectional fiber used in examples of this subsection are the same as those in [2].
Table 3

GI and GII for interface crack of isotropic bimaterial

D=h GI GI GII GII

p ¼ 6 p ¼ 8 p ¼ 6 p ¼ 8

1.0E) 1 0.0426679 0.0428116 0.0011769 0.0011675

5.0E) 2 0.0415825 0.0416705 0.0023384 0.0023284

5.0E) 3 0.0355615 0.0356307 0.0084044 0.0083841

5.0E) 4 0.0270981 0.027147 0.0169095 0.0168826

5.0E) 5 0.0177138 0.0177394 0.0263338 0.0262994

5.0E) 6 0.0090767 0.0090939 0.0349806 0.0349481

1.0E) 6 0.0043625 0.0043484 0.0398225 0.0397115
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That is, the material properties of carbon–epoxy ply used in the numerical tests in Examples 5.4(A) and (B)

are the following:

E11 ¼ 134:45 Gpa; E22 ¼ E33 ¼ 10:20 Gpa;

G12 ¼ G13 ¼ 5:52 Gpa; G23 ¼ 3:43 Gpa;

m12 ¼ m13 ¼ 0:30; m23 ¼ 0:49:
Example 5.4. (A). The first laminate specimen ½0=90=0� consists of plane strain drop-ply configuration of 0�
and 90� graphite–epoxy plies as shown in Fig. 7(a), which is Test #1 of [2]. In this example, the thickness h
of the layer next to the interlaminar crack is 0.125, the crack length is 0.4, and D denotes the side length of

the inner most eight triangular element (Fig. 8). The singular zone XS for our method is the 40 elements

inside the square neighborhood ½�0:125; 0:125� � ½�0:125; 0:125� of the crack tip.

Our method is applied to estimate GI and GII when D=h is 10�1; . . . ; 10�7. Table 4 depicts the results when
the degree of basis functions are 4, 8, and 9. The results in Table 4 show that the energy release rate is
virtually D-independent whenever the p-degree of basis functions is 8 or 9 (FE solutions for stress functions

become highly accurate).

On the other hand, if p-degree is 6 4;GI is increasing and GII is decreasing as D! 0. This is a similar

pattern as those reported in [12]. In order to compare the figures reported in [2], GII=GI versus D=h are

plotted in Fig. 9. The results when p ¼ 4 is similar to those in [2].
Fig. 7. Scheme of drop-ply configuration for the test problems (A) and (B) of Example 5.4.



Fig. 8. Mesh for the finite element analysis for the problems 5(A) and 5(B).

Table 4

GI and GII for the interlaminar crack of drop-ply configuration which is Test #1 of [2] (see Fig. 7(a))

D=h GI GII

p ¼ 4 p ¼ 8 p ¼ 9 p ¼ 4 p ¼ 8 p ¼ 9

1.0E) 1 2.676E) 2 2.723E) 2 2.725E) 2 0.361E) 2 0.396E) 2 0.396E) 2

1.0E) 2 2.678E) 2 2.725E) 2 2.727E) 2 0.359E) 2 0.395E) 2 0.394E) 2

1.0E) 3 2.676E) 2 2.725E) 2 2.727E) 2 0.359E) 2 0.395E) 2 0.394E) 2

1.0E) 4 2.672E) 2 2.725E) 2 2.727E) 2 0.359E) 2 0.395E) 2 0.394E) 2

1.0E) 5 2.646E) 2 2.725E) 2 2.727E) 2 0.377E) 2 0.395E) 2 0.394E) 2

1.0E) 6 3.874E) 2 2.726E) 2 2.727E) 2 0.172E) 2 0.396E) 2 0.394E) 2

1.0E) 7 3.272E) 2 2.726E) 2 2.727E) 2 0.232E) 2 0.396E) 2 0.394E) 2

Fig. 9. Results of the p-version finite element analysis of laminate ½0=90=0� with h ¼ 0:125 (Fig. 7(a)).
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The computation costs are comparable. In this p-version finite element analysis, 90 quadrilateral

elements and eight triangular elements are used as it is shown in Fig. 8. On the other hand, in [2], 763

eight-noded quadrilateral interpolation elements are used for the finite element analysis of this test problem.
In [2], the singular and non-singular near-tip meshes consist of 18 rings of elements meshed over a length

equal to h=2. However, Fig. 8 shows that the near-tip meshes of our method consist of five rings of elements

over ½�h; h� � ½�h; h� near the crack tip, h ¼ 0:125.
Actually, the mapping technique in p-FEM does not require such a very fine mesh as shown in Fig. 8. If

we put only two rings with side length, for example, r1 ¼ h=10; r2 ¼ h=2, then the number of elements is

reduced from 98 to 74 and the mapping zone for the mapping method consists of eight quadrilateral ele-

ments and eight triangular elements. The accuracy of the finite element solution obtained by 74 elements

mesh (two rings mesh) is virtually the same as that obtained by the 98 elements mesh (five rings mesh). The
reason to put five rings in Fig. 8 is to apply the definition (Eq. (14)) of total energy release rate when D is

extremely small.

(B). Consider a laminate ½0=0=90=0� as shown in Fig. 7(b), in which h ¼ 0:1. The energy release rates of

this case are much higher than those of Example 5.4(A) and the mode mix for Examples 5.4 (A) and (B) are

different as it is pointed out in [2]. This is Test #2 of [2].

As shown in Table 5, the mode-separated energy release rates also virtually converge whenever p-degree
is 8, 9. GII=GI is depicted in Fig. 10 with respect to D=h ¼ 10�n; n ¼ 1; . . . ; 7. Once again, Fig. 10 shows that

GII=GI when p ¼ 4 is similar to those in [2].
(C). Finally, we consider the interlaminar crack between two layers which are highly dissimilar. For

instance, consider Example 5.4(A) (Fig. 7(a)) when the first layer and the second layer are the graphite-

epoxy composites and the third layer of 0� fiber orientation is a graphite–polymer composite with the

following material properties (Table 2.1 of [8]):

E11 ¼ 155 Gpa; E22 ¼ E33 ¼ 12:10 Gpa;

G12 ¼ G13 ¼ 3:20 Gpa; G23 ¼ 4:40 Gpa;

m12 ¼ m13 ¼ 0:248; m23 ¼ 0:458:

In this case, the degree of mismatch of two layers is large and hence the oscillating factor cannot be

negligible. Thus, as shown in Fig. 11, the mode-separated energy release rates do not converge.

From Examples 5.4(A)–(C), we have the following observations:

• Actually, in cases (A) and (B), since two layers are weakly mismatched, the oscillating factors e become

small. Therefore, the energy release rates for the Mode I and the Mode II virtually converge. In practical
fiber-reinforced composite materials, the layers are orthotropic materials which are the composition

of one resin and one fibre materials, but may have different fiber orientations. In other words, any
Table 5

GI and GII for the interlaminar crack of drop-ply configuration which is Test #2 of [2] (see Fig. 7(b))

D=h GI GII

p ¼ 4 p ¼ 8 p ¼ 9 p ¼ 4 p ¼ 8 p ¼ 9

1.0E) 1 3.310E) 2 3.260E) 2 3.262E) 2 8.526E) 2 8.145E) 2 8.125E) 2

1.0E) 2 3.286E) 2 3.252E) 2 3.254E) 2 8.524E) 2 8.153E) 2 8.133E) 2

1.0E) 3 3.277E) 2 3.252E) 2 3.254E) 2 8.526E) 2 8.152E) 2 8.133E) 2

1.0E) 4 3.306E) 2 3.252E) 2 3.254E) 2 8.647E) 2 8.153E) 2 8.133E) 2

1.0E) 5 3.275E) 2 3.252E) 2 3.254E) 2 8.719E) 2 8.151E) 2 8.132E) 2

1.0E) 6 2.816E) 2 3.252E) 2 3.254E) 2 8.351E) 2 8.154E) 2 8.135E) 2

1.0E) 7 2.990E) 2 3.255E) 2 3.255E) 2 9.343E) 2 8.136E) 2 8.129E) 2



Fig. 10. Results of the p-version finite element analysis of laminate ½0=0=90=0� with h ¼ 0:1 (Fig. 7(b)).

Fig. 11. Results of the p-version finite element analysis of the laminate Fig 7(a) when the first two layers are graphite–epoxy com-

posites and the last layer is graphite–polymer composite.
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two layers in a laminate are usually weakly dissimilar. Thus, the mode-separated energy release rates for

the interlaminar crack of such a laminate virtually converge.

• However, if two layers are highly dissimilar like case (C), then the oscillating factor becomes large and

hence the energy release rates for the Mode I and Mode II do not exist. In other words, the mode-sep-

arated energy release rates for the interlaminar cracks of such a highly mismatched bimaterial do not

converge.
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6. Concluding remarks

By no means is our method able to change the physical property of dissimilar materials so that the

oscillating factor can be removed. In other words, neither PAM nor EAM is able to alter the oscillating

behavior of the solutions even though it can remove the monotone singularity of type rk for accurate finite
element analysis.

In this paper, we considered only the PAM to deal with the singularities. If the oscillating factor is very

large (not realistic), we can take advantage of the EAM to have more accurate finite element analysis.
However, EAM transforms a bounded domain XS into unbounded domain X̂XS. Moreover, the noncon-

vergence of mode-separated energy release rates are not due to an inaccuracy of the FE solutions of the

displacement vectors, but due to the nature of high mismatch of two dissimilar materials.

Finally, let us note that in the framework of h-FEM, the mapping method introduced in this paper

cannot have any advantages over the conventional finite element methods that uses the quarter-point

singularity elements around the crack tip (see Appendix A.1 for details).
Acknowledgements

The author thanks Drs. K. O�Brien and I. Raju for inviting him to NASA Langley Research Center for

this research. He also thanks Prof. L. Carlsson for personal correspondence related to this research and

encouragement. Furthermore, the author is grateful to referees who provide constructive suggestions and

comments to improve this paper.
Appendix A

A.1. The method of auxiliary mapping

Babu�sska and Oh [1,13,14] introduced a new method, called the method of auxiliary mapping (MAM),

that can effectively handle the ra-type (a < 1) singularities [7,9].

The essence of this method involves locally transforming a neighborhood XS of each singularity point to

a new domain X̂XS by use of the mappings such as z ¼ fb (the power auxiliary mapping), where z ¼ xþ iy,
f ¼ x̂xþ iŷy.

Here b is directly determined by the known nature of the singularity in such a way as to locally transform

the exact (singular) solution to a smoother function, which can be easily approximated in the new mapped
domain by the conventional use of the p-version of the FEM. An optimal choice for the mapping size b is

1=a. For example, consider a crack singularity of the form r1=2f ðr; hÞ located at the origin, where f is

smooth. Then, the auxiliary mapping wðzÞ ¼ z1=4 maps the upper half plane into one half of the first

quadrant, and a point ðr̂r; ĥhÞ in the lower half of the first quadrant evaluates as r̂r2f ðr̂r4; 4ĥhÞ, a smooth

function.

To further understand the effect of the power auxiliary mapping wðzÞ ¼ z1=4, let XS ¼ fðr; hÞ : r < R1; 06
h6 p=4g. Then X̂XS ¼ wðXSÞ ¼ fr̂r; ĥhÞ : r̂r6R1=4

1 ; 06 ĥh6 p=16g. If we consider the basis function of p-degree
12 over X̂XS, the singular functions created over XS through the power auxiliary mapping restricted to the
positive x-axis are generated by f1; x1=4; x1=2; x3=4; x; x5=4; . . . ; x11=4; x3g. That is, the auxiliary mapping

implicitly creates special singular basis functions which mimic the singularity.

Suppose we use the linear basis functions over X̂XS, the singular functions created over XS through the

PAM, wðzÞ ¼ z1=2, restricted to the positive x-axis are generated by f1; x1=2g: Thus, it has no more advantage
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over the quarter-point singularity elements in h-FEM. Moreover, if the PAM wðzÞ ¼ z1=4 were selected, the
results would be worse. Thus, the mapping method is not recommended in h-FEM.
A.1.1. Basis vectors for the displacement vector space

The finite element solution of (7) for a specific mesh D is to construct approximations of each compo-

nents of fug. Let fUiðx; yÞ : i ¼ 1; . . . ; n ¼ NðDÞg be basis functions of the finite element space

SpðX;D; fWigÞ which is defined in Section 3. Then the components of a displacement vector (which is in

½SpðX;D; fWigÞ�2) in term of the basis functions Ui are of the form

uxðx; yÞ ¼
Xn
i¼1

aiUiðx; yÞ;

uyðx; yÞ ¼
Xn
i¼1

anþiUiðx; yÞ;

where ai ði ¼ 1; . . . ; 2nÞ are called the amplitudes of the basis functions Ui.

Let

fUgi ¼
Uiðx; yÞ

0

 �
; i ¼ 1; 2; . . . ; n; ðA:1Þ
fUgi ¼
0

Ui�nðx; yÞ

 �
; i ¼ nþ 1; nþ 2; . . . ; 2n: ðA:2Þ

Then fug can be written as
fug ¼
X2n
i¼1

aifUgi:
Moreover, we have the following.

Lemma A.1. The bilinear form ðthe principal of virtual workÞ BðfUgi; fUgjÞ on an element E becomes

Z
E
ðrUjÞT

E11 E13

E31 E33

� �
rUi dx dy if fvg ¼ fUj; 0gT; fug ¼ fUi; 0gT;
Z
E
ðrUjÞT

E33 E32

E23 E22

� �
rUi dx dy if fvg ¼ f0;UjgT; fug ¼ f0;UigT;
Z
E
ðrUjÞT

E13 E12

E33 E32

� �
rUi dx dy if fvg ¼ fUj; 0gT; fug ¼ f0;UigT;
Z
E
ðrUjÞT

E31 E33

E21 E23

� �
rUi dx dy if fvg ¼ f0;UjgT; fug ¼ fUi; 0gT:
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A.1.2. Change of variable by the power auxiliary mapping

Let ub
powðx̂x; ŷyÞ is a conformal mapping from the x̂x–ŷy plane to the x–y plane defined by

ub
powðr̂r; ĥhÞ ¼ ðr̂rb cosðbĥhÞ; r̂rb sinðbĥhÞÞ; ðA:3Þ

where ðr̂r; ĥhÞ is the polar coordinates of ðx̂x; ŷyÞ and the real number bP 1 is the mapping size. Let

rx 	 ðo=ox; o=oyÞ, rx̂x 	 ðo=ox̂x; o=oŷyÞ, and fûug ¼ fug � ub
pow.

Then the principal of virtual work on XS is transformed to the those in the following lemma by the power

auxiliary mapping. For the proof, we refer [14].

Lemma A.2 (Change of variables). Suppose fug ¼ fUi; 0gT and fvg ¼ fUj; 0gT. Then
Bðfug; fvgÞ 	
Z
XS

ðrxUjÞT
E11 E13

E31 E33

� �
ðrxUiÞ dx dy ¼

Z
XS

ðrxUjÞT
a11 a12
a21 a22

� �
ðrxUiÞ dx dy

¼
Z
X̂XS

ðrx̂xÛUjÞT
q11 q12
q21 q22

� �
ðrx̂xÛUiÞ dx̂x dŷy 	 B̂Bðfûug; fv̂vgÞ; ðA:4Þ

where

t ¼ ð1� bÞĥh;
q11 ¼ a11 cos2 t þ a22 sin

2 t � ða21 þ a12Þ sin t cos t;
q12 ¼ ða11 � a22Þ sin t cos t � a21 sin

2 t þ a12 cos2 t;
q21 ¼ ða11 � a22Þ sin t cos t � a12 sin

2 t þ a21 cos2 t;
q22 ¼ a11 sin

2 t þ a22 cos2 t þ ða12 þ a21Þ sin t cos t:

8>>>><
>>>>:

For fvg ¼ fUj; 0gT and the source vector ffx; fygT; we have

FðfvgÞ 	
Z
XS

fxðx; yÞUjðx; yÞ dx dy ¼
Z
X̂XS

b2ðx̂x2 þ ŷy2Þb�1f̂fxðx̂x; ŷyÞÛUjðx̂x; ŷyÞ dx̂x dŷy 	 F̂Fðfv̂vgÞ: ðA:5Þ
A.1.3. Elemental mappings of blending type for curved elements

Let XðtÞst be the standard triangular element in the n–g plane with vertices V ðtÞ1 ¼ ð�1; 0Þ, V
ðtÞ
2 ¼ ð1; 0Þ,

V ðtÞ3 ¼ ð0;
ffiffiffi
3
p
Þ.

Then
L1 ¼ ð1� n� g=
ffiffiffi
3
p
Þ=2;

L2 ¼ ð1þ n� g=
ffiffiffi
3
p
Þ=2;

L3 ¼ g=
ffiffiffi
3
p

are the nodal basis functions on XðtÞst and represent the area coordinates of ðn; gÞ 2 XðtÞst :

Let XðqÞst be the standard quadrilateral element in the n–g plane with vertices V ðqÞ1 ¼ ð�1;�1Þ; V ðqÞ2 ¼
ð1;�1Þ; V ðqÞ3 ¼ ð1; 1Þ; V ðqÞ4 ¼ ð�1; 1Þ. Then
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N1 ¼ ð1� nÞð1� gÞ=4;
N2 ¼ ð1þ nÞð1� gÞ=4;
N3 ¼ ð1þ nÞð1þ gÞ=4;
N4 ¼ ð1� nÞð1þ gÞ=4

are the nodal basis functions on XðqÞst .
Let ðX1; Y1Þ ¼ ð0; 0Þ; ðX2; Y2Þ; ðX3; Y3Þ; . . . ; ðX28; Y28Þ be the coordinates of the nodes 1; . . . ; 28 of the mesh

of XS in Fig. 1, respectively. The coordinates of the corresponding points in X̂XS are denoted by

ðX̂Xk; ŶYkÞ; k ¼ 1; . . . ; 24 (that is, u2
powðX̂Xk; ŶYkÞ ¼ ðXk; YkÞÞ. Then, by using the blending function method of

Section 6.3.3 of [23], one can construct bijective elemental mappings from the reference elements to the

curved elements ÊEk.

(A) Elemental mapping from XðtÞst onto a curved triangular elements with one circular curvy side.

For example, since ðr̂r3; ĥh1Þ and ðr̂r3; ĥh2Þ are the polar coordinates of ðX̂X2; ŶY2Þ and ðX̂X3; ŶY3Þ, the curved side

ŜSð1Þ1 	 2! 3 of the curved triangle ÊE1 	 2! 3! 1 is parameterized as follows:

x̂xð1Þ1 ðnÞ; ŷy
ð1Þ
1 ðnÞ

� �
¼ r̂r3 cos

ĥh2 � ĥh1
2
ðn

" 
þ 1Þ þ ĥh1

#
; r̂r3 sin

ĥh2 � ĥh1
2
ðn

"
þ 1Þ þ ĥh1

#!
;

where �16 n6 1. Then the elemental mapping of blending type ÛU1 : X
ðtÞ
st ! ÊE1 is defined by

x̂x ¼ L1X̂X2 þ L2X̂X3 þ L3X̂X1 þ
4L1L2

1� n
x̂xð1Þ1 ðnÞ
�

� 1� n
2

X̂X2

�
þ 1þ n

2
X̂X3

��
;

ŷy ¼ L1ŶY2 þ L2ŶY3 þ L3ŶY1 þ
4L1L2

1� n
ŷyð1Þ1 ðnÞ
�

� 1� n
2

ŶY2

�
þ 1þ n

2
ŶY3

��
:

ðA:6Þ

(B) Elemental mapping from XðqÞst onto a curved quadrilateral elements with two circular curvy sides.

For instance, suppose ÊE9 	 3! 2! 11! 12 is the curved quadrilateral element with two curved sides

in Fig. 1. Then, since the polar coordinates of ðX̂X11; ŶY11Þ and ðX̂X12; ŶY12Þ, respectively, are ðr̂r2; ĥh1Þ and ðr̂r2; ĥh2Þ,
the two curved sides ŜSð9Þ1 	 3! 2 and ŜSð9Þ3 	 11! 12 are, respectively, parameterized as follows:

x̂xð9Þ1 ; ŷyð9Þ1

� �
ðnÞ ¼ x̂xð1Þ1 ; ŷyð1Þ1

� �
ðnÞ;

x̂xð9Þ3 ; ŷyð9Þ3

� �
ðnÞ ¼ r̂r2 cos

ĥh2 � ĥh1
2
ðn

" 
þ 1Þ þ ĥh1

#
; r̂r2 sin

ĥh2 � ĥh1
2
ðn

"
þ 1Þ þ ĥh1

#!
;

where �16 n6 1. Hence the elemental mapping of blending type ÛU9 : X
ðqÞ
st ! ÊE9 is defined by

x̂x ¼ x̂xð9Þ1 ðnÞ
1� g
2
þ x̂xð9Þ3 ðnÞ

1þ g
2

;

ŷy ¼ ŷyð9Þ1 ðnÞ
1� g
2
þ ŷyð9Þ3 ðnÞ

1þ g
2

:

ðA:7Þ

(C) Elemental mapping from XðqÞst onto a curved quadrilateral elements with one circular curvy side.

For example, let E25 	 21! 20! 29! 30 � ½�h0; h0� � ½�h0; h0� is the curved quadrilateral element

with one curved side (see Fig. 1), which is in the regular zone XR. Then the curved side Sð25Þ1 	 21! 20 is
parameterized as follows:

xð25Þ1 ; yð25Þ1

� �
ðnÞ ¼ r1 cos

h2 � h1
2
ðn

��
þ 1Þ þ h1

�
; r1 sin

h2 � h1
2
ðn

�
þ 1Þ þ h1

��
;
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where �16 n6 1 and r1 ¼ h0=2. Hence, the elemental mapping U25 : X
ðqÞ
st ! E25 is defined by

x ¼ xð25Þ1 ðnÞ
1� g
2
þ N3ðn; gÞX29 þ N4ðn; gÞX30;

y ¼ yð25Þ1 ðnÞ
1� g
2
þ N3ðn; gÞY29 þ N4ðn; gÞY30:

ðA:8Þ

It could be a lot of extra work to construct the singular basis functions constructed through the above

mapping technique for the local stiffness matrices and local load vectors. However, the novelty of our

method is avoiding this extra work as follows: instead of construing the singular basis functions in

SpðX;DðXÞ; fWkgÞ, we use the transformed bilinear form B̂Bð�; �Þ and linear functional F̂Fð�Þ (the right side

integrals in Lemma A.2), which is the conventional FEM to compute local stiffness matrices and local load

vectors for the corresponding curved elements ÊE.
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